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QUALITY ASSESSMENT AND CONTROL OF FINITE ELEMENT SOLUTIONS
Ahmed K. Noor Ivo Babuska
George Washington University Institute for Physical Science and Technology
at NASA Langley Research Center University of Maryland
Hampton, VA 23665 College Park, MD 20742

ABSTRACT

, Status and some recent developments in the techniques for assessing the reliability
of finite element solutions are summarized. Discussion focuses on a number of aspects
including: the major types of errors in the finite element solutions; techniques used for
a posteriori error estimation and the reliability of these estimators; the feedback and
adaptive strategies for improving the finite element solutions; and postprocessing
approaches used for improving the accuracy of stresses and other important engineering

data. Also, future directions for research needed to make error estimation and adaptive

e

;o
improvement practical are identified. \:’

1. INTRODUCTION

The finite element method has become the main tool in computational mechanics
and to date the method is used for solving a large class of engineering problems which are
stated in terms of differential, pseudo-differential, integral or integro-differential
equations. The success of the finite element method is manifested by the development of
over five hundred user-oriented finite element program systems, and over two hundred
pre- and postprocessing packages (Ref.l). There are over 20,000 finite element users
worldwide who are estimated to spend about $500 million annually on finite element
analyses. The literature on the subject is nearly overwhelming and to date there are over
two hundred monographs and conference proceedings published on various aspects of the
finite element technology (Ref. 2). A review of some recent developments in finite
element method is contained in survey papers (see, for example, Refs. 3 and 4) and a
state-of-the-art monograph (Ref. 5). Despite the significant advances made on the theory

and algorithmic tools of the finite element method, the selection of the finite element
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model for a particular problem is largely based on intuition and experience gained from
solving similar problems. Moreover, the assessment of the reliability of the finite element
solution continues to be the most difficult aspect of the finite element analysis. Some
aspects of the errors in finite element computations are discussed in Refs. 6 and 7. Error
estimation and control is now at the "cutting edge" of the finite element technology.

In recent years considerable interest has been shown in the development of reliable
error estimates as well as feedback procedures (or adaptive strategies) by which a required
accuracy of the finite element solution can be most economically reached. The number of
publications on the subject has been steadily increasing and, although two symposia
proceedings have been published on the subject (Refs. 8 and 9), there is a need to broaden
awareness among practicing engineers and research workers about the status and recent
developments in various aspects of quality assessment and control of the finite element
solutions. This paper is an attempt to fill this void. Specifically, the objectives of this
paper are: a) to review and assess the current techniques used for error estimation and
adaptive improvement of the finite element solutions; and b) to identify future directions
of research needed to make error estimation and adaptive improvement practical.

The contents of the paper are arranged as follows: in section 2, the major types of
errors in a finite element solution are listed; in section 3, the available technology for
estimating the discretization errors is reviewed. Then the different strategies for
adaptive improvement of the finite element solution are discussed in section 4. In section

5 the postprocessing techniques used for improving the quality of stresses and other
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impor tant engineering data are reviewed. The future directions of research on quality u‘
assessment and control are identified in section 6. S
There is a large literature available. The cited references are selected for S

illustrating the ideas presented and are not necessarily the only significant contributions

to the subject. The discussion in this paper is kept on a descriptive level and for all the

mathematical details the reader is referred to the cited literature. ,
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2. MAJOR ERRORS IN THE FINITE ELEMENT SOLUTION

In general, the reliability of the finite element solutions to engineering problems is
influenced by the following factors (see Refs. 6 and 7):

a) Reliability of the mathematical model which describes the real structure in
mathematical terms. The stochastic formulation is one of the possible mathematical
formulations of the engineering problem. However, deterministic formulations are more
commonly used.

b) Errors and uncertainties in the input information (of the mathematical model).
These inciude uncertainties in material, geometry; boundary conditions; loading
environment; and the characteristics of the probability fields in the stochastic
formulation.

c) Discretization errors which are caused by the numerical discretization of the
continuous mathematical model, as well as by the truncation of infinite processes (e.g.,
iterative procedures and summation of infinite series),

d) Roundoff errors which occur in the implementation of numerical algorithms on
computers with finite precision (limitation in representing real numbers due to the
finiteness of the computer word length).

An assessment of the reliability of the mathematical model requires the
identification of the range of validity of the mathematical theory used in describing the
model, and the effect of violating some of the basic assumptions of the theory on the
response predictions. Examples of these issues are provided by the range of validity of
dimensional reduction when applied to plates with rapidly varying thickness (i.e., the
reduction from three-dimensional continuum theory to two-dimensional plate theory -

Refs. 10 and 11); the applicability of the linear elasticity theory in the neighborhood of a

crack tip; and the effect of “pseudo-supports” on the response of structural members (Ref.

7).
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The stochastic formulation, which is widely used in dynamics, leads to a
deterministic formulation for the mean and correlation functions of the solution (see Refs.
12 to 20). Monte Carlo methods are sometimes valuable tools for the mathematical
treatment of the uncertainties in the problem parameters. As an alternative to stochastic
modeling, an assessment of the effect of the uncertainties in the input information on the
response can be made by evaluating the sensitivity of the response of the system to each
of the input parameters.

The discretization error represents the difference between the exact and the
approximate (finite element) solutions for the mathematical model. The determination of
the actual discretization error requires the availability of the exact solution, which is
rarely known in practical problems, However, even when the exact solution is not
available, it is possible to construct quantitative estimates for the discretization error and
to determine the rate of change of the error as the number of degrees of freedom in the
finite element model increases.

Since discretization errors are functions, error norms are usually used to measure
the size of these errors. For a brief discussion of the error norms used in finite element
analyses, see Appendix I. The class of discretization errors also includes the errors caused
by the truncation of iterative procedures and the summation of infinite series. To date
discretization error analyses are of a priori and a posteriori types. This will be discussed
further in the succeeding section.

In recent years considerable work has been devoted to the control of round-off errors
and its accurate estimation. An overview of the current state-of-the-art is contained in
Ref. 21, in which practical methods and algorithms are presented for carrying out basic
processes of numerical analysis with guaranteed error bounds. The error bounds account
for rounding errors, and wherever appropriate, discretization errors. Some of the
algorithms presented in Ref. 21 have been incorporated in the high-accuracy arithmetic

package (ACRITH) marketed by IBM (Ref. 22). An important feature of the package is its
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ability to accumulate inner products exactly. Some flaws in the package have been
discussed in Ref. 23. Analytical approaches for developing a priori and a posteriori bounds
for roundoff errors are presented in the two monographs (Refs. 24 and 25), and in the two
papers (Refs. 26 and 27). A priori and a posteriori estimates of roundoff errors, based on
linearized perturbation theory, are given in Ref. 28. The primary use of these estimates is
to assess the suitability of numerical algorithms based on the sensitivity of the solution to
perturbations in the input data. An extensive bibliography on error analysis based on the
use of interval mathematics is contained in Ref. 29,
3. ESTIMATION OF DISCRETIZATION ERRORS

Since the development of modern finite element method in the mid 1950's, attempts
have been made by engineers and researchers to obtain information about discretization
errors, and to prove the convergence of the solutions. Mathematicians became interested
in the subject in mid 1960's. Until recently, the two groups worked almost independently,
and even now, the emphasis of the work of the two groups is different. The availability of
information about discretization errors, in addition to its importance in assessing the
reliability of the finite element solutions, provides the possibility of obtaining the "best
possible" solution within an allowable cost range.

3.1 Types of Discretization Error Estimates

In general, there are two types of discretization error estimates: a) a priori
estimates; and b) a posteriori estimates.

A priori estimates are based on a knowledge of the characteristics of the solution
such as its smoothness, and provide qualitative information about the asymptotic rate of
convergence as the number of degrees of freedom goes to infinity. Although a priori
estimates are accurate for the worst case in a particular class of solutions of the problem
(e.g., class of all solutions which have the second derivative bounded by a constant), they
usually do not provide information about the actual error for a given finite element

model. Nevertheless, a priori estimates can be very effective when used in extrapolation
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techniques. To date a priori error estimates (or convergence rate estimates) are available
for a wide variety of finite elements. For a brief discussion of a priori error estimates see
Appendix I. A thorough analysis of these errors is given in many monographs and
publications (see, for example, Refs. 30 to 35).

A posteriori estimates use information obtained during the solution process, in
addition to some a priori assumptions about the solution. For an abstract treatment of the
questions related to incomplete information see Ref, 36, Discussion in the succeeding
subsections will focus on a posteriori estimates which can provide quantitatively accurate
measures of the discretization error.

3.2 Discretization Error Diagnostics

Early work by engineers on discretization errors focused on measuring the degree of
reliability of the solution obtained with a given finite element model, and developing error
diagnostics through checking the satisfaction of: a) the natural boundary conditions (for
variational-based finite elements); b) the equilibrium equations by calculating the
unbalanced forces (equilibrium defects) both in the interior of the element as well as on its
interfaces, see Ref. 37 (for compatible displacement models); and c) the compatibility
equations by calculating the strain incompatibility in the interior of the elements as well
as across adjacent elements (for equilibrium, mixed and nonconforming models).

The aforementioned error diagnostics are based on considering the finite element
solution as an exact solution of the original problem with perturbed input data (e.g.,
magnitude of unbalanced forces). The main problem is to relate the magnitude of the
perturbations to the response quantities of interest (e.g., stresses). Modern a posteriori
error estimation techniques are often indirectly related to error diagnostics through the
effects of superconvergence. Superconvergence, which can occur at special points, refers

to extraordinarily high rates of convergence (and concomitant high accuracy) observed at

these points.
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Equilibrium defects may be deceptive unless properly used and interpreted (see Ref.
38). The proper interpretation of equilibrium defects is still, in general, an open
question. For a discussion of some aspects of this subject see Refs. 37, 39 and 40.

3.3 Classical Approaches for Estimating Discretization Errors

The two classical approaches for estimating the discretization errors are:

a) Extension Methods based on comparing the finite element solutions obtained using

a sequence of meshes of increasing refinement (h extension); with an increasing degree of
the polynomial shape functions (p extension); or using a combination of the two (h-p
extension). The computer implementation of the h-, p- and h-p extensions are referred to
as the h-, p- and h-p versions, respectively. Extension methods are used to determine the
rate of convergence of the finite element solution, and its actual error.

The h-version of the finite element method is the standard one. The mathematical
theories for the p- and h-p versions are given in Refs, 41 to 51, Engineering and
computational aspects of extension methods are discussed in Refs. 52 to 56. The
a posteriori error bounds in Refs. 39, 46, 52, 54 and 56 are obtained by using extrapolation
Irocedures. The selection of the correct extrapolation procedure is based on the
theoretical a priori error estimates, and is essential for the effectiveness of the
a posteriori estimates (see Refs. 39, 46, 52, 54 and 56).

The effectiveness of extension methods in practical applications depends to a great
extent on their efficient computer implementation. Herein efficient implementation
refers to the combination of the coarse and fine grid solutions in the h- version or the
lower- and higher-degree polynomial solutions in the p-version to generate the final
solutions. For the h-version efficient computer implementation can be achieved by using
multigrid concepts which are widely used in conjun~tion with the finite difference method
(see Ref. 57). For the p- and h-p versions, efficient implementation can be made by using
elements with nested set of shape functions (i.e., hierarchic shape functions, see Ref.

52). A brief discussion of the hierarchic shape functions and their computational
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advantages is given in Appendix IL

b) Dual (or Complementary) Procedure - based on obtaining two solutions using

direct and complementary variational methods to provide bounds on the error of the global
response characteristics. This approach can be applied to self-adjoint problems
formulated using minimum (rather than stationary) variational principles. For elasticity
problems this is accomplished by using the direct and dual formulations of the problem
(based on the principles of the minimum potential energy and the minimum complementary 5
energy) to obtain upper and lower bounds of the error measured in the energy norm (see

Ref. 58). Applications of the dual procedure are given in Refs. 59, 60 and 61. The -
procedure is expensive but leads to guaranteed upper bounds of the error (measured in the
energy norm) which are not pessimistic.

3.4 A Posteriori Error Estimates and Error Indicators

In recent years considerable effort has been devoted to the development of
computable (i.e., element by element) a posteriori error estimates based on local error
estimators. These error estimators are based on information obtained during the solution -
process itself. The work presented in Refs. 62 to 66 started this activity and was extended
in various directions (se~ Refs. 67 to 77). For example, in Ref. 67 error estimates are -
presented for linear elements (with linear shape functions) using a priori bounds on single K
elements as well as a posteriori information about the second derivatives. All the error
estimates developed in the cited references are for compatible (or conforming) finite d
element models.

The finite element solutions have equilibrium defects in the interior and on the .

portion of the boundary where tractions are prescribed; as well as jumps in the tractions at
interelement boundaries. The equilibrium defects are nearly self-equilibrating. The
square of the energy norm of the total error (i.e., the strain energy of the error) can be
obtained by summing the squares of the energy norms of the errors for individual

elements, each obtained by solving (or estimating the solution of) an auxiliary problem
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characterizing the equilibrium defects in that element (see Refs. 62, 69, 73 and 77). In
case of odd-degree elements (elements with odd-degree polynomial shape functions), the
boundary defects dominate the residual, and for even-degree elements the interior defects
are dominant (see Ref. 78). The energy norms of the aforementioned auxiliary problem
can be accurately estimated or obtained by a finite element with properly selected shape
functions. Hierarchic shape functions are particularly useful for this purpose (see Refs.
68, 71, 79 and 80).

The estimation of the square of the energy norm of the total error through

"Y' . i D R LT Y T

v

summation of elemental contributions can also be applied to nonlinear problems (including

-

limit and bifurcation points in the solution space), see Refs. 62, 64, 79, 81 and 82,

. BEEE .y N v

The local error estimators (computed for individual elements) are referred to in Ref.
) (e)

66 as error indicators n ( ale ), where Q is the element domain. Some approaches
for constructing error indicators are described in Refs. 79 and 83. Errer indicators can be
used to construct overall problem error estimators, ¢ , for the problem. The expression

of ¢ intermsof n depends on the particular error norm being used (see Refs. 66, 67, 71,

S TS ST e )

73, 76, 83, 84 and 85). For example, the energy norm error is given

no(Q
elements

by: » 2 (o),

e ¢a’1L O .° .,

Other error estimators proposed include residual errors in the constitutive relations

(Refs. 40, 74 and 86); and in the strain-displacement relations (Ref. 87). Error estimators

"I C. ',

for singular perturbation problems are given in Refs. 83 and 88.

3.5 Reliability of Error Estimators

The a posteriori error estimators described in the preceding subsections are
asymptotically correct if the ratio of the estimator to the true error converges to one as

the true error tends to zero (when the mesh size tends to zero, or when the degree of

P

polynomial shape function goes to infinity). Therefore, in order to assess the reliability of . l

these estimators for a finite grid, an effectivity index, 8 , was introduced in Refs. 65 and
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89. The effectivity index is defined as follows:

6 = [
~ e

where e is the a posteriori error estimator and || e || is the norm of the error. The
estimator is asymptotically correct when 6->1 as || ell~o.

For practical applications it is essential that l6-1| be small (e.g., less than 0.2
when the error || e || is of the order of 10% of the norm of the solution, and should
decrease as the error decreases, see Ref. 62).

It is preferable that 6 be greater than one so that the true error is overestimated.
The asymptotic correctness of the error estimator is related to the superconvergence
effects. In addition, some assumptions about the meshes and the solution are needed,
without which the quality of the estimators can be low. The assumptions abc;ut the meshes
are satisfied when they are constructed adaptively., In such cases |6 -1| is of the order of
0.1. The mathematical theory of error estimators is discussed in Refs. 73, 77, 78 and 85.
Application to one-dimensional probiems are given in Refs. 50 and 63.

3.6 Error Estimators for Stationary and Transient Problems

Most of the error estimates reported in the literature are for stationary problems
(linear and nonlinear). Error estimates have also been developed for some transient
problems (see Refs. 79, 83 and 90 to 97). Stationary problems include static stress analysis
and are mcstly governed by elliptic systems of differential equations. The transient
problems include dynamic response and wave propagation problems and are governed by
equations of the parabolic and hyperbolic types.

Among the elliptic structural mechanics problems for which a posteriori error
estimates exist are one-dimensional rod with variable stiffness, second-order partial
differential equations, and two-dimensional elasticity. Numerical results have been
presented for plane stress problem of a cracked plate, plane strain problem of a dam, L-
shaped region with a corner singularity, see Refs. 62, 68-70, 84-86 and 88. The cited

references contain numerical examples that demonstrate the effectiveness of the error
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estimators. Most of the problems presented in the cited references are governed by
second-order differential equations and are modeled by using conforming elements. Error
estimates for plate bending problems and for the boundary element method are discussed
in Ref. 98. Only few finite element programs have facilities for

error estimation, based on the computation of error indicators (see, for example, Refs. 81,

99 and 100). This will be discussed further in Section 4.3.

3.7 Comments on Error Estimators

1. The selection of an error measure depends on the goal of the computation, and on
which response quantities need to be accurately determined, e.g., buckling loads, stresses
in a critical zone; stress intensity factors at crack tips; or density in compressible flow
problems (for a discussion of the goals of stress analysis see Ref. 101). This is particularly
important since the smallness of one measure does not guarantee the smallness of the
errors in other response quantities, computed from the finite element solution. An
example of this was given in Ref. 39 where a small energy norm error was associated with
large errors in the computed stresses.

2. For the elliptic problems consideréd in the literature the computation of the
error indicators takes a small percentage of the total solution time. Significant dif-
ferences can occur in the cost of computing different error estimators. Also, error
estimators for higher-order elements are more expensive to compute than for lower-order
elements.

3. Pointwise estimation of the errors in detailed response quantities (e.g., stresses,
displacements and stress intensity factors) is considerably more difficult than the evalu-
ation of the local energy norm errors. For simple problems (e.g., Saint-Venant torsion
problem, one-dimensional problems, and two-dimensional plane elasticity problems) ’
attempts have been made to obtain pointwise error estimates for stresses. These error
estimates are based on a postprocessing approach (Ref. 102) or on heuristic arguments

using the experience gained from finite difference discretizations (Refs. 72 and 103).
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4, When the goal of the analysis is the accurate determination of detailed response
quantities such as the stresses, pointwise error estimates are needed. If these pointwise
estimates are not available, then energy norm errors are computed, and additional
numerical tests are performed such as element-by-element equilibrium test and action-
reaction test (Ref. 104).

4. THE ADAPTIVE IMPROVEMENT OF FINITE ELEMENT SOLUTIONS

Adaptive improvement of finite element solutions refers to improving the quality of
the solutions by enriching the approximation in some manner so as to achieve the "best"
solution for a given computational effort (or cost). Adaptive procedures have in common
with feedback approaches the fact that the computed information is used for steering the
process, However, it is the attempt to obtain the "best" solution that distinguishes
adaptive processes from feedback approaches, Therefore, an adaptive process is a
feedback approach which is optimal with respect to clearly defined objectives (see Refs.
89, 105 and 106). The adaptive process is normally performed after an initial solution is
already available; and regions of the solution domain where the accuracy i; not
satisfactory have been identified according to a preselected set of criteria. This process
can be iterated using the last solution as the new initial solution. The term adaptive
refers to the fact that each model modification step uses, in some optimal way, the
information provided by previous steps. For a discussion of the notion of adaptivity in
numerical procedures see Refs. 89 and 105,

Adaptive processes can result in considerable savings in computational effort if an
initial coarse grid is used followed by an effective strategy to improve the quality of the
solution wherever needed. In most of the literature on feedback approaches, neither the
goals of the process nor the criteria used to test whether the feedback approach is
adaptive, are defined. A feedback approach can be adaptive (and hence optimal) with
respect to a set of criteria and nonadaptive with respect to cther criteria. In the h-

version of the finite element method, the feedback consists of the construction of
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successive meshes to achieve the goal of computation, and in the h-p version both the
shape functions and the mesh are enriched simultaneously.

Mesh selection and improvement can be carried out by using Al-based expert
systems, or a combination of expert systems and a feedback approach. The expert systems
act as an expert consultant which decides the direction to steer the adaptive process (Ref.
107), or can be used as a preprocessor for designing the finite element model.

In general, a feedback process has a number of key elements including (see Refs. 76,
84, 88, 89 and 105):

a) error measure. Each model modification step should aim to minimize some error
measure. This error measure is related to the goal of the computation;

b) the feedback procedure (or adaptive modification strategy) which aims at
minimizing the error measure selected in a) in the most effective manner; and,

c) stopping criterion. This criterion is related to the goal of the computation,
usually through reducing the error measure to a prescribed tolerance.

The efficiency of the feedback process is measured through a well-defined cost
function (see Ref. 106). If either the error measure or the cost function is changed, the
feedback algorithm and the resulting finite element model may change significantly. As
an example to this, the use of the error measures based on the energy norm and the
maximum stress norm can lead to two quite different finite element models.

4.1 Strategies for Adaptive Improvement of Solutions (Feedback Procedures)

Among the different strategies used for adaptive improvement of the finite element
solutions (feedback procedures) are the following four:

a) successive selection of the meshes;

b) moving the nodes (node relocation);

c) successive selection of the local order of the approximation; and,

d) simultaneous selection of the meshes and the local order of approximation.
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In the first strategy, the degree of the elements is kept constant and the mesh is
construéted in a feedback manner. It is usually referred to as the h-method. It can result
in refining or de-refining the mesh. De-refinement of the mesh may be necessary in
transient (time-dependent) problems and in nonlinear problems when continuation method
is used for their solution. A theoretical analysis of the various feedback approaches and
their optimality in one-dimensional problems is given in Refs, 80 and 108. The feedback
approaches for multidimensional problems are based on heuristic arguments and analogies
with one-dimensional problems. Note that the feedback algorithms involve a direct or
indirect use of the error indicators discussed in Section 3.4; and the adaptive strategies
usually aim at making the error indicators for different elements nearly equal.

In the second strategy, the quality of the finite element solution is improved by
optimizing the location of the nodes keeping the number of degrees of freedom fixed and
the degree of the elements constant. This is usually referred to as R-method (Refs. 109
and 110). For hyperbolic equations the R-method is more often used in conjunction with
finite-difference methods than with finite element methods. Because of the kinship
between the two methods, the basic ideas of adaptive approaches used in conjunction with
finite differences can be applied to the finite element methods. For a discussion of
adaptive finite-difference methods see, for example, Refs, 111 to 116,

In the application of the moving element method to initial value (transient)
problems, a fixed number of finite elements are moved so as to concentrate the
computational grid in regions containing nonuniformities in the solution (e.g., shocks, near
shocks, boundary layers, and sharp moving fronts). Both the nodal amplitudes and nodal
positions move continuously with time in such a way as to satisfy simultaneous ordinary
differential equations (in time) which minimize the partial differential equation
residuals. Galerkin-type finite elements are typically used for the spatial discretization
and stiff ordinary differential equation solvers are used for the temporal integration.

Several mesh moving techniques have been developed for one-dimensional parabolic and
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hyperbolic systems (see, for example, Refs. 95, 97, and 117 to 122). For two-dimensional
systems, substantial difficulties still remain including mesh tangling and gross distortion
(see, for example, Refs. 79, 94 and 123 to 125).

The third strategy is based on successive selection of the order of the polynomial

T e Ay )

approximation inside the elements. It is usually referred to as the p-method and has the

advantages over the first two methods of being easy to implement and of providing a

simple formula for the error indicator. This is particularly true when hierarchic basis

functions are used, since the stiffness matrices and load vectors corresponding to a

polynomial of degree p are embedded in the stiffness matrices and load vectors

corresponding to polynomials of degrees > p+l (see Refs. 79, 83 and 126 to 123). X
Application of this strategy to the solution of three-dimensional thermoelastic problems of
anisotropic solids is given in Ref, 129,

The fourth strategy, based on simultaneous selection of the meshes and the local
order of approximation is referred to the h-p method. The mathematical foundations for
the adaptive h-p method and R-methods are much less developed than for the other
methods.

A variety of feedback approaches are now available for differential equations of
different types: elliptic, parabolic, and hyperbolic; linear and nonlinear; describing a
broad spectrum of engineering problems. Significant contributions were made in the last
few years (see, for example, Refs. 67 to 71, 77, 79, 83, 84, 90 to 92, 94 to 97, 116 to 121,
123, 125 and 130 to 132).

Some of the feedback approaches are based on older ideas such as the local
extrapolation techniques and the deferred correction approach. The deferred correction
approach is used in various software packages for solution of initial and two-point
boundary value problems. It is based on using the numerical solution obtained to construct
a pseudo or neighboring problem whose exact solution is known (e.g., polynomial or spline i

interpolation of the discrete numerical solution). The pseudo problem is then solved using
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the same finite element model as that used for the original problem. The error in the
pseudo problem is assumed to be a close approximation of the error in the original problem

and is used as a correction to that solution. The technique has been successfully applied to

O S T

the numerical solution of stiff systems of ordinary differential equations (Refs. 133 and
134) and has recently been extended to finite element boundary-value problems (Refs. 135
to 137).

4,2 Optimal Finite Element Mesh A

An optimal finite element mesh is the one, among the class of admissible meshes, for
which the distribution of the nodes (and associated degrees of freedom) minimize the error
(measured in a particular norm). In the class of admissible meshes, among other things,
the local order of approximation is specified. Obviously, changing the error norm or the
class of admissible meshes may change significantly the optimal mesh.

The first attempts to produce optimal meshes for variational-based finite elements
were based on considering the nodal positions to be unknowns, and minimizing the
functional (potential energy) with respect to both the nodal degrees of freedom and the
nodal positions (Refs. 138 to 141). Such an approach was found to be impractical since it
results in nonlinear equations, even for linear problems. -

The construction of an optimal mesh, which minimizes the error, results in an ill- .
posed problem. A small movement of a node of the optimal mesh leads to a second-order N
change in the error. To alleviate this problem nearly optimal meshes are considered. For
transient problems the feedback procedure used for generating nearly optimal meshes, is

based on using various spring constants and other stabilization parameters in the finite

element model (see Refs. 9% and 117). a
L]

More recently, it was proposed to characterize an optimal mesh as one for which the :

error indicators for different elements are nearly equal. For one-dimensional problems it ¢
*

was shown that the mesh with equal error indicators is asymptotically optimal in the sense

that it leads to the minimum error for a given number of degrees of freedom (see Refs. 51

-
»
[

*

.
N
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and 65). Most of the currently-used adaptive strategies attempt to construct nearly
optimal meshes (with nearly equal error indicators). This is referred to as the
equilibration principle for mesh construction (Ref. 66). Important applications of this
principle for the cases when the solution has singularities are given in Refs. 53, 142 and
143, A detailed analysis of the optimal meshes and distribution of element degrees for a
one-dimensional problem is given in Ref. 51. In the cited reference the characteristics of
the optimal meshes, as well as the upper and lower bounds of the error are given, for both
the h- and h-p methods.

The mathematical foundations for the construction of optimal meshes is much better
developed for elliptic problems than for parabolic and hyperbolic problems. For initial
value (transient) problems the reader is referred to Refs. 79, 83, 90 to 92, 125 and 131. In
principle, if the mesh constructed in the feedback mode has nearly the same accuracy

(measured in some norm) as that of the optimal mesh, then the feedback process is defined
: to be optimal. Hence, the lower estimates for the error of an optimal mesh have close
;j relation to the construction of an adaptive approach.

4.3 Computer Implementation of Feedback Procedures (Adaptive Strategies)

One of the most difficult aspects of feedback procedures is the computer

R implementation of the automated enrichment or adaptive algorithm. This includes the
selection of the data structure used for the representation (and refinement) of the grid,
and grid management. The implementations of feedback processes are different for
elliptic, parabolic and hyperbolic problems (see Refs. 75, 81, 93, 96, 99, 100, 144 to 147).
Most of the aforementioned papers on adaptive improvement of numerical solutions give
numerical examples to demonstrate the proposed strategies, but do not present general
computer programs for implementing these strategies.

To the authors' knowledge none of the large-scale, general-purpose commercial
finite element systems has facilities for adaptive enrichment of solutions. However, some

A
? special-purpose and pilot finite element systems have implemented adaptive algorithms
7
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for practical performance studies, Among these systems are the Finite Element Adaptive
> Research Solver (FEARS) developed at the University of Maryland in 1979-1980 (Ref. 99);
| the EXPDES system developed in Belgium (Ref. 100); the PLTMG system at the University
of California, San Diego (Ref. 81); the self-adaptive finite element simulator (SAFES code)
developed at the University of Wyoming (Ref. 148); and the PROBE system developed by
NOETIC Technologies Corporation in St. Louis (Ref. 52). The first two systems and the
last system are designed to solve two-dimensional elliptic problems. The three systems
(FEARS, PLTMG and EXPDES) are based on the h-version. The last system (PROBE) is a
d commercial program which uses the p- and h-p extensions. Although it is currently not

self-adaptive, the developer is adding the automatic enrichment capability to it. The
- SAFES code performs the spatial refinement for elliptic and parabolic linear systems. All
of the aforementioned programs were developed for sequential computers, It is
¥ anticipated that modern parallel architecture will have a strong impact on the
implementation of adaptive methods (see Refs. 145 and 149).

4.4 Comments on Adaptive Strategies and Feedback Procedures

The following comments can be made concerning the adaptive strategies reported in
the literature:

a) Adaptive processes have been used extensively in the solution of ordinary
differential equations (initial value and two-point boundary value problems). Modern
program packages incorporate feedback approaches.

- b) Detailed rigorous mathematical analyses of adaptive algorithms are only
available for some one-dimensional problems. For multidimensional problems the
algorithms used for the adaptive construction of the desired sequence of nearly

equilibrated meshes (with nearly uniform error indicators) are largely of a heuristic

nature,

-~

¢) The efficient computer implementation of adaptive processes has not matured

yet. However, based on the experience acquired so far certain directions are evolving.
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For example, in the adaptive h-version the use of a tree structure for the data was found
to provide the most efficient data management system. In the adaptive p- and h-p
versions the use of hierarchic shape functions is optimal because the stiffness and load
matrices for a certain level of refinement remain unchanged when a higher level is
introduced, and iterative methods can be efficiently used for solving the algebraic
equations associated with different levels of refinement (similar to the multigrid finite
difference setting); see, for example, Refs. 57, 75, 81, 96, 99, 100, 144 and 147.

d) For elliptic problems adaptive strategies based on mesh enrichment (h-, p- and h-
p methods) are more commonly used than those based on node relocation (R-method). For
a large class of engineering problems, the h-p extension has an exponential rate of
convergence with respect to the number of degrees of freedom, while the h- and p-
extensions have only a polynomial rate of convergence (see Appendix I). However, if
properly-graded meshes are used, the performance of the p-extension in the pre-
asymptotic range is very close to the best performance attainable with the h-p extension.
Moreover, for quasi-uniform meshes the rate of convergence of the p-extension cannot be
worse than that of the corresponding h-extension (based on the same total number of
degrees of freedom). In the presence of singularities, the rate of convergence of the p-
extension can be twice that of the h-extension (Refs. 44 and 46 to 48).

e) For initial value (parabolic and hyperbolic) problems moving meshes have to be
used either continually or by adaptively determined intervals (Ref. 92). The major
drawback of moving mesh techniques is that they do not add and/or delete elements as the
computation progresses, and are generally not capable of generating a solution with a
prescribed level of accuracy. To remedy this drawback a strategy combining mesh moving
and refinement (or de-refinement) has recently been proposed (see Refs. 115, 124 and 146).

f) The p-version results in more dense matrices than the h-version and is more

convenient and simpler to implement. In addition, the treatment of curved elements
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require special care when higher-degree polynomials are used (viz., smooth mapping such
as that provided by the blending function method - see Appendix II).

g) The p-version was found to be not too sensitive to the "locking" problems
encountered in thin plate and curved shell structures (see Ref. 150).

5. POSTPROCESSING OF FINITE ELEMENT SOLUTIONS TO IMPROVE THEIR QUALITY

CRSANEESYS NS TN

Often the primary objective of the finite element analysis is to determine certain

response quantities, such as stress intensity factor, stresses, strains, displacements, or flux

- WA

in some area of the domain (or structure). The simplest approach is to compute this data

»
’

PO

directly from the finite element solution. For example, stresses are calculated by

Y Y T v v

differentiating the displacement field and using the constitutive relations. This results in

S

lower accuracy for the stresses (and strains) than for the displacements. Recent studies

U

have demonstrated that the accuracy and rate of convergence of stresses (and strains)

7
TR AV R

depend on how (and where) they are computed. The number of publications on

P

postprocessing approaches, based on the superconvegence concepts (i.e., increased
accuracy and improved rates of convergence), is steadily increasing (for example, Ref. 151
lists 200 publications on superconvergence). Most of the publications deal with elliptic
problems. Among the proposed postprocessing approaches for elliptic problems are:

a) evaluating the stresses at numerical quadrature points and determining their
values at the displacement nodes by extrapolation;

b) averaging or smoothing based on projection techniques;

c) using the extraction techniques;

d) computing the stresses using the discarded structural equations (corresponding to
prescribed displacement boundary conditions); and,

e) using iterative refinement techniques which build continuous stress field and
displacement field from the classical solution.

The first approach is by far the most commonly used. Superconvergence has been

observed for displacement derivatives and stresses evaluated at the quadrature points of
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- uniform meshes (using Gaussian quadrature formula of the proper degree- see Refs. 152 to
Ca
159).
P
:“_: Averaging and smoothing techniques can be very effective for postprocessing of the
-

finite element solution. Several approaches for averaging and smoothing have been
proposed in the literature (see, for example, Refs. 160 and 161). The analysis of simple

averaging techniques is discussed in Refs. 151 and 162. The superconvergence for general

(nonuniform) meshes seems to be an open question (see Ref. 163).

Extraction techniques are based on using analytic expressions of the function which
approximate the kernel of the functional of interest. Because of its higher cost of
implementation, this approach is feasible for computing the stress intensity factor, or for
obtaining accurate stresses only in a small area (critical zone) of the structure (see Refs.
52, 102 and 164 to 169). Extraction methods for computing the stress in;censity factor in
problems with singularities at the corner and along the edges are presented in Ref. 170,

The fourth approach has recently been extended to the computation of stresses at
the interfaces between elements using the previously computed stiffness matrices and load
vectors (Ref. 171). For one-dimensional problems, the technique requires little
computation and its implementation is straightforward. However, for two-dimensional
problems, the stress calculation involves the evaluation of contour integrals and the
implementation is more complex. Moreover, new difficulties arise from the presence of
corners in polygonal domains.

[terative refinement techniques, such as those reported in Refs. 172 to 174, have
been quite effective in reducing equilibrium errors and significantly improving the
accuracy of the calculated stresses. These techniques were recently shown to be
equivalent to mixed formulations in which the stresses (or strains) and displacements are
used as primary variables (Ref. 175). The techniques have high potential for nonlinear
problems since the iterative improvement can be done simultaneously with those

necessitated by the nonlinearity, and no additional computational cost is involved.
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The aforementioned approaches were discussed in the context of elliptic problems.
Less work has been done on superconvergence concepts and postprocessing approaches for
parabolic problems, and much less for hyperbolic problems (see Refs. 176 and 177).

6. FUTURE DIRECTIONS FOR RESEARCH

Considerable attention has been devoted to the estimation and control of
discretization errors which is manifested by the development of a mathematical theory for
a posteriori error estimates and feedback approaches (adaptive refinement strategies).
However, the theory is very incomplete and has been numerically tested only on a simple
set of problems. Moreover, adaptive strategies have only been incorporated into special-
purpose and pilot finite element systems used for practical performance studies. To-date
none of the general-purpose commercial finite element systems have facilities for

estimating the error in the finite element solution, or for adaptive improvement of this

solution. To remedy this situation major advances are needed in the theory, strategies and
algorithms for implementation of error estimation and control. Some of these advances
are listed subsequently.

1. Development of reliable measures for estimating the errors in the finite element
predictions of the major response quantities (selected by the analyst according to the goal
of computation). These errors are due to the simplifying assumptions made in abstracting
the mathematical model from the real system (structure); uncertainties in the input
information (of the mathematical model); and numerical discretization of the continuous
mathematical model. The following observations can be made about estimating the
different types of errors:

a) The use of hierarchic modeling strategies and formulations (e.g., hierarchy of

two-dimensional plate and shell theories) allows the estimation of modeling errors as well

as the adaptive refinement of the model whenever needed.
b) The use of stochastic formulations allows the study of the effect of uncertainties

in input information on the response predictions of the finite element model.
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c) Practical a posteriori error estimators should satisfy the following four criteria.
i) provide reliable local assessment of the error;
ii) are computationally inexpensive to evaluate;
iii) applicable to a wide class of discrete finite elements; and,
iv) easy to use in conjunction with adaptive improvement.
Note that the choice of the error estimator depends on the goal of the computation (e.g.,
buckling analysis, detailed stress analysis, determination of stress intensity factor, etc.).

In the absence of practical error estimators, attempt should be made to develop
computationally inexpensive error sensors or correction indicators which give an indication
of the regions where mesh refinement is needed. The sensitivity derivatives of the
solution to the degree of approximation can be used as error sensors. Also, numerical
checks to validate the solution should be conducted. Examples of these checks are
element-by-element equilibrium check and action-reaction test,

2. Development of efficient adaptive improvement strategies. In particular, the
development of finite element models based on the p-hierarchic shape functions for
higher-order problems (e.g., shear-flexible plates and shells) along with efficient numerical
algorithms for reanalysis. The element computation should include the esstential
information needed for a posteriori error estimation.

3. Efficient computer implementation of adaptive strategies. This includes using
novel computer science concepts for data management.

4. Development of adaptive strategies for new computing systems. A number of
attempts have been made to develop parallel numerical algorithms and parallel software
for adaptive processes (see, for example, Refs. 145 and 149). However, the effective use
of parallelism in adaptive strategies requires the use of:

a) primitive-variable formulations (e.g., three field mixed formulation in structural
mechanics);

b) domain decomposition or substructuring (with minimization of interfaces); and
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c) operator splitting techniques to uncouple the resulting algebraic equations.

5. A systematic assessment of the postprocessing techniques used for improving the
accuracy of derivative calculation (stresses and strains in displacement finite element
models) is needed. Also, the possibility of using these techniques for error sensing should
be investigated.

6. Development of Al-knowledge based system for efficient use of finite element
programs by the nonexperts.

7. Selection of meaningful benchmark problems which have the essential features of
practical problems to test the theory and the effectiveness of the adaptive strategies
developed.

7. CONCLUDING REMARKS

Status and some recent developments in the techniques for error estimation and
adaptive improvement of finite element solutions are summarized. Discussion focuses on
a number of aspects including: the major types of errors in finite element solutions;
techniques used for a posteriori error estimation and the reliability of these estimators;
the feedback and adaptive strategies used for improving the finite element solutions; and
postprocessing approaches used for improving the accuracy of stresses and other important
engineering data.

The status of finite element modeling, error estimation and adaptive improvement of
finite element solutions can be summarized in the following:

1. Mathematical modeling errors. Despite their importance, have not received
enough attention in the literature. To date no simple and general approach is available for
assessing these errors.

2. Selection of the formulation and initial finite element models. These are largely
based on intuition and experience gained from similar problems. The modeling process can
be aided by the information available on the asymptotic rates of convergence (a priori

estimates of the discretization errors) for different finite element models based on
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different formulations. These a priori error estimates predict the asymptotic rate of
convergence as the mesh size tends to zero (or the degree of polynomial shape function
goes to infinity). However, except in the adaptive improvement of finite element
solutions, a priori error estimates are currently not used in constructing the initial finite
element models. The knowledge-based systems, in spite of their high potential have not
been sufficiently developed to aid in the modeling process.

3. Assessment of the reliability of the finite element solution. This includes:

a) Selection of an appropriate measure for the discretization error, which depends on
the goal of the computation, and on which response quantities need to be accurately
determined; and,

b) Calculation of a posteriori estimates for the discretization error using locally

computable (element-bir-element) error indicators.

The most commonly used error measures are the interior and boundary residuals; and
the local energy norm error. The first represents the equilibrium defects in the interior;
on the portion of the boundary where tractions are prescribed, as well as the jumps in the
tractions at interelement boundaries. The energy norm error is defined as the square root
of the strain energy of the error. Pointwise error estimates for detailed response
quantities (e.g., stresses and displacements) are available only for simple problems (e.g.,
Saint Venant torsion problem and one-dimensional problems).

Most of the a posteriori error estimates reported in the literature are for stationary,
(elliptic) problems (e.g., plane stress analysis of structures subjected to conservative
loading and modeled by conforming displacement finite elements). No a posteriori error
estimates are available for nonconforming elements.

4. Postprocessing of finite element solutions. The accuracy of strains, stresses and
stress intensity factors computed from compatible finite element models can be improved
by postprocessing. Several approaches have been proposed in the literature. A systematic

and detailed assessment of these approaches is needed.




5. Quality control for finite element solution. This is accomplished by using
adaptive strategies which are feedback processes aimed at achieving the desired accuracy
with the least computational effort and/or cost. The adaptive process is performed after

an initial solution is already available and the regions of the solution domain where

accuracy is not satisfactory have been identified (according to the preselected error

measure). Four adaptive strategies have been proposed in the literature. These include:

i) successive selection of the meshes (h-method); ii) moving the nodes (R-method); iii)
successive selection of the order of the polynomial approximation inside some elements (p-
method); and iv) simultaneous selection of the meshes and of the local order of
approximation (h-p method).

For stationary (elliptic) problems the h-, p- and h-p methods are more commonly
used than the R-method. For time-dependent (parabolic and hyperbolic) problems adaptive
strategies are based on either the moving mesh techniques or combination of mesh moving
and refinement (or de-refinement).

The mathematical theory for a posteriori error estimates and feedback approaches is
very incomplete and has been numerically tested only on a simple set of problems. In spite
of the considerable attention devoted by engineers and mathematicians to the subject of
error estimation and control, none of the large-scale commercial finite element systems
has facilities for error estimation or adaptive improvement.

The maturation of the technology of estimation and control of discretization errors,
and the incorporation of this technology into general-purpose finite element systems, will
allow the analyst to select only: a) the initial discrete model which is sufficient to resolve
the topology of the structure (or the geometry of the domain); and b) the error measure
and the tolerance. Then the finite element system can automatically refine the model
until the selected error measure falls below the prescribed tolerance. The strategy for
adaptive improvement can either be specified by the user or automatically selected by the

program (possibly with the aid of an Al-based expert system) in such a manner as to
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minimize the cost of the analysis. The research areas that are needed to make error
estimation and adaptive improvement practical are identified in the paper.
ACKNOWLEDGEMENT
The work of A. K. Noor was supported by NASA Langley Research Center under
Grant NGR 0_9-010-078, and the work of Ivo Babuska was partially supported by the Office
of Naval Research under Contract NOOO 14-85-K-0169. The authors wish to acknowledge

useful discussions and suggestions by Werner Rheinboldt, Barna Szabo and J. Tinsley Oden.



APPENDIX I - ERROR NORMS

Error norms are introduced to provide quantitative measures of the magnitude of
the error in the finite element solutions. These are measures of the magnitude of the
discretization errors in certain quantities, and therefore, their-choice depends on the
goal of the analysis. Three principal choices of error norms are commonly used in finite
- element methods: the energy norm e |l E » the mean-square norm Il e ”O , and the
maximum or infinity norm | e || _.

The energy norm is defined as the square root of the energy of the error, i.e.
: lellg =« vee o) 1/?
. where Q represents the solution domain; U represents the strain energy; e is the
discretization error function (difference between the exact and the finite element
solutions, respectively).

The mean-square (or LZ) norm measures the root-mean-square of the errors over

- the solution domain, and is defined by:

| e ”0 = (f e2 dQ)l/2

Q

- The maximum norm measures the maximum absolute value of the error over its

domain:

|| e ”m = max Ie(x)[
XERN

D MR ¢

: In Egs. (A.2) and (A.3), e refers to displacement, stress or other response quantity,
Of the three error norms, the energy norm is the most commonly used. It provides a

meaningful quantitative measure for the error in the finite element approximation and is

Pl R |

. equivalent to the root-mean-square of error in stresses. For practical engineering

applications the maximum norm is not convenijent to use.
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For conforming elements based on minimization principles the strain energy of the
error decreases monotonically with systematic changes of the discretization (refining the
mesh or increasing the degree of the polynomial approximation).

For a wide variety of finite elements a priori error estimates have been
developed. These estimates predict the asymptotic rate of convergence as the mesh size
tends to zero (or the degree of polynomial interpolation function goes to infinity).

A priori estimates for stationary (elliptic) and time-dependent (parabolic and
hyperbolic) problems are given in the literature on mathematical theory of finite
elements. Both conforming and nonconforming elements; single-field and multifield
models have been studied.

For simplicity, only linear elliptic, self-adjoint, positive-definite problems
(example, linear static stress analysis problems modeled by compatible displacement
models) are considered herein. For these problems the discretization error consists of
two distinct parts: a) approximation error; and b) perturbation error. The first
(approximation) error characterizes the approximation of the finite element solution and
depends on:

a) Order of the highest-order derivative used in the formulation;

b) Degree of the elements;

c) Dimension of the largest finite element (e.g., diameter of the element); and

d) Smoothness of the solution.

For uniform meshes when the solution is not smooth (e.g., due to the presence of
singularities in the solution inside the region or on the boundary) the convergence rate
decreases.

Perturbation errors result from geometric approximation of the boundary;
approximation of the essential boundary and continuity conditions; and numerical

approximation of integrals. The finite element solution is said to be optimal if the

perturbation errors do not exceed the approximation errors.
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For elliptic problems in which the perturbation error is small, the error estimate
can be given in the following simple form:

| e || < CiN) (A.4)
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where C is a positive constant depending upon the data of the problem; N is the number
of degrees of freedom in the model; and f(N) is a function of N; which depends also on
L the choice of interpolation functions; the element size; and the smoothness of solutions.

1f | e || is selected to be the energy norm|| e HE’ the function f(N) can be given by:

f(N) = N° (A.5)
for the h and p extensions (Refs. 47 and 48); and
)
(N = 1/e ™ (A.6)

for the h-p extension (Ref. 46).
where B8,y and 6 are positive constants which can be determined by using a priori
error estimates.

For the h-version the asymptotic rate of convergence, B, is the absolute value of

\ the slope of the plot log|| e || g versus log N. A large B signifies a rapid decrease in the

:: error with increasing N. For the h-p version the asymptotic rate of convergence can be
conveniently obtained by plotting log || e || versus NS,

>
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APPENDIX II - HIERARCHIC BASIS FUNCTIONS

Hierarchic basis functions refer to nested sets of shape functions which have the
property that each set is explicitly contained in the succeeding sets. The nesting of the
shape functions is similar to that of the terms of the Fourier series expansion, and is
usually used in conjunction with the p-extension. However, it can be interpreted in the
context of the h-extension when the shape functions associated with a coarse grid are
explicitly contained in successively refined grids. The nesting of the shape functions
results in the nesting of the elemental stiffness matrix and load vector (i.e., the stiffness
matrix and load vector associated with the lower-degree shape functions are explicitly
y contained in successively higher-order approximations). In the p-extension, the lower-
degree shape functions are contained in successively higher-degree basis. These basis
functions are constructed from integrals of Legendre polynomials and are referred to as
p-hierarchic shape functions.

For one dimensional elements and two-dimensional quadrilateral master elements
with C° continuity the p-hierarchic shape functions are listed subsequently (see Ref. 52).

B.l One-dimensional Elements

In one dimension the set of p-hierarchic shape functions are:

1/2 (1-¢)

=
]

=
]

1/2 (1+5%)

N = /212'3 75 Pi—2(t)dt R i>3
-1

where Pi(t) is Legendre polynomial of degree i; £ is a dimensionless coordinate,

-l <g < L,



The shape functions Ni have the following orthogonality property

1 aNi N,

YT dg:dij i, >3

f+

-1

where éij is the Kronecker delta.
Note that for i > 3, Ni (-1) = Ni(+1) = 0.

B.2 Two-Dimensional Quadrilateral Elements

These have three kinds of hierarchic shape functions:

a) Nodal shape functions. These are the 4 standard shape functions for a

quadrilateral element:

No=1/4 Q-8 -n)
ﬁz = 1/4 (1+48)(1-n)
ﬁ3 = 1/4 (1+£)(1+n)
N, = 1/4 (1-£)(1+n)

b) Side Shape Functions. There are 4 (p-1) shape functions associated with the

sides of elements (p > 2). The shape functions associated with the sides n=-1and £=+l

have the form:
(1) _ _
Ni =1/2 (1-n) Ni(i)

(i

!}
W
-

- . p)
NP =12 ae) N )

1 1
with similar definitions for the shape functions !rl(i” and P-J(ia) associated with the sides

n=+l and r=-1l;andN i( £)and N;(n); i > 3, are the one-dimensional shape functions defined

in the preceding subsection.

S TR TR T

c) Internal Modes. There are 1/2(p-2)(p-3) internal modes (p > 4). The first mode
2

W m = a-ehHa-nh

L&)
SO,

The other internal modes are obtained by multiplying N](O) by Legendre

REARA! DL NN

polynomials and products of Legendre polynomials, as follows:
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with similar definitions for the other shape functions.

B.3 Two-Dimensional Curved Sided Elements

The implementation of proper mapping procedures is important in order to ensure

that the boundary approximation will not degrade the performance of the element. One

F R RIS

approach to accomplish the mapping is through the use of linear blending function

method (see Refs. 178 and 179), in which the Cartesian coordinates x,y are expressed as

_"‘{ i

functions of the local element coordinates & and n .

The inverse mapping can be obtained by using, for example, Newton-Raphson .
technique. Isoparametric mapping can be viewed as a special application of the blending
function method in which the sides are represented by polynomial functions.

B.4 Comments on Hierarchic Shape Functions -

The following observations can be made about hierarchic shape functions. -
1. The quality of the finite element approximation depends on the selected finite i
element mesh and the degree of polynomial interpolation function. The use of hierarchic ¢
and nonhierarchic shape functions, of the same degree, results in the same ¢
approximation. In fact, there is a simple transformation which maps hierarchical _‘
solutions into standard form. :

2. The p-hierarchic shape functions possess the following two computational -

advantages over the nonhierarchic shape functions:
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a) possibility of using previous solutions and computations; and,

b) improved conditioning of the equation.

3. Hierarchical shape functions have been developed for triangular elements with
Cl continuity (Ref. 180). However, the form of these functions is fairly complicated for
practical applications. In addition, no C1 shape functions exist for curved-sided

elements.

ARPREDS  PIRRERR

DR RN

W
2

. 'y o *

- m”ae

. v "

34

_" DR |

e T T i A A

- RS ™ e . O e e e e
PR R I A PP iy G S, G I




¥ v

heni 1S

2 L
hd

CEWASSNGL L

XA AN

L AP
AR
W,

-
g
L4
o

REFERENCES

1. Fredriksson, B. and Mackerle, J., "Structural Mechanics: Finite Element Computer
Programs", new up-to-date fourth edition, Advanced Engineering Corp., Linkoping,
Sweden, 1984,

2. Noor, A. K., "Books and Monographs on Finite Element Technology," Finite Elements in
Analysis and Design, Vol. 1, 1985, pp. 101-111.

3. Hughes, T. J. R., "Some Current Trends in Finite Element Research," Applied
Mechanics Reviews, Vol. 33, No. 11, Nov. 1980, pp. 1467-1477.

4, Zienkiewicz, O. C., "The Generalized Finite Element Method - State-of-the-Art and
Future Directions," Journal of Applied Mechanics, Transactions of the ASME, Vol. 50,
Dec. 1983, pp. 1210-1217.

5. Noor, A. K. and Pilkey, W. D. (eds.), State-of-the-Art Surveys on Finite Element
Technology, The American Society of Mechanical Engineers, NY, 1983,

6. Utku, S. and Melosh, R. J., "Solution Errors in Finite Element Analysis," Computers and
Structures, Vol. 18, No. 3, 1984, pp. 379-393,

7. Babuska, ., "Uncertainties in Engineering Design: Mathematical Theory and Numerical
Experience,”" Technical Note BN-1044, Institute for Physical Science and Technology,
University of Maryland, August 1985. To appear in The Optimal Shape-Automated
Structural Design, ed. by J. Bennett and M. Batkin, Plenum Press, 1986,

8. Babuska, L., Chandra, J. and Flaherty, J. E. (eds.), Adaptive Computational Methods for
Partial Differential Equations, SIAM, Philadelphia, 1983,

9. Babuska, l., Zienkiewicz, O. C., Oliveira, E. A., Jago, J. R. and Morgan, K. (eds.),
Accuracy Estimates and Adaptivity for Finite Elements, John Wiley, 1986.

10. Kohn, R. V., Vogelius, M., "A New Model for Thin Plates with Rapidly Varying
Thickness," International Journal of Solids and Structures, Vol. 20, 1984,
pp. 333-350.,

11. Kohn, R. V. and Vogelius, M., "Thin Plates with Rapidly Varying Thickness and Their
Relation to Structural Optimization," in Homogenization and Effective Moduli of
Materials and Media (The IMA Volumes in Mathematics and Its Applications), ed. by J.
Ericksen, D, Kinderleher, R. Kohn and J. L. Lions, Springer-Verlag, New York, 1986.

12, Babuska, I., "On Randomized Solutions of Laplace's Equation," Casopis. Pest. Mat.,Vol.
36, 1961, pp. 269-276.

13, Larsen, S., Numerical Analysis of Elliptic Partial Differential Equations with Stochastic
Input Data, Ph.D. Dissertation, University of Maryland, 1985.

14. Sun, T. C., "A Finite Element Method for Random Differential Equations," in
Approximate Solution of Random Equations, ed. by A. T. Bharuche-Reid, North Holland,
NY, 1979, pp. 223-237.

s DAY




15. Sun, T. C., "A Finite Element Method for Random Differential Equations with Random
Coetficients," SIAM Journal on Numerical Analysis, Vol. 16, No. 6,liec.1979, pp. 1019-
1035.

16. Clough, R. W. and Penzien, J., Dynamics of Structures, McGraw-Hill, 1975,

17. Bolotin, V. V., Random Vibrations of Elastic Systems, (in Russian), (translated from
Russian by I. Shenkman), M. Nijhoff Publishing Co., The Hague, 1984,

18. Dias, J. B. and Nagtegaal, J. C., "Efficient Algorithms for Use in Probabilistic Finite
Element Analysis," in Advances in Aerospace Structural Analysis, AD-09,The American
Society of Mechanical Engineers, 1985, pp. 37-50.

19. Liu, W, K., Belytschko, T. and Mani, A., "Random Field Finite Elements," to appear in
the International Journal for Numerical Methods in Engineering, 1986.

20. Liu, W. K., Belytschko, T. and Mani, A., "Probabilistic Finite Elements for Nonlinear
Structural Dynamics,"” to appear in Computer Methods in Applied Mechanics and
Engineering.

21, Kulisch, U. W, and Miranker, W. L. (eds.), A New Approach to Scientific Computation,
Academic Press, 1983,

22. IBM High-Accuracy Arithmetic, Subroutine Library: General Information Library,
General Information Manual, IBM Program No. 5664-185 (1983); and Program Description
and Users Guide, IBM Program No. 5664-185 (1983).

23. Kahan, W. and LeBlanc, E., "Anomalies in the IBM ACRITH Package," IEEE Proceedings
of Seventh Symposium on Computer Arithmetic, June 4-6, 1985, Urbana, IL, pp. 322-331.

24, Wilkinson, J. H., Rounding Errors in Algebraic Processes, Prentice Hall, Englewood
Cliffs, NJ, 1963.

25. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press, London, 1965,

26. Wilkinson, J. H., "Modern Error Analysis," SIAM Review, Vol. 13, No. 4, Oct. 1971,pp.
548-568.

27. Olver, F. W. J. and Wilkinson, J. H., "A Posteriori Error Bounds for Gaussian
Elimination,” IMA Journal of Numerical Analysis, Vol. 2, No. 4, Oct. 1982, pp. 377-406.

28. Stummel, F., "Perturbation Theory for Evaluation Algorithms of Arithmetic
Expressions,” Mathematics of Computation, Vol. 37, No. 156, Oct. 1981, pp. 435-473.

29. Garloff, J., "Interval Mathematics - A Bibliography, ~-eiburger Internall Berichte No.
85/6, Institut fur Angewandte Mathematik Universitat, Freiburg i Br, 1985.

30. Strang, G. and Fix, G. J., An Analysis of the Finite Element Method, Prentice Hall,
Englewood Cliffs, NJ, 1973.

31. Oden, 3. T. and Reddy, J. N., An Introduction to the Mathematical Theory of Finite
Elements, John Wiley, 1976.

I X AR AN




|00 S utane A ut ave bl o A% i o _1‘:-:,:7 T M Land A SR Rt gl gl ol el

32. Mitchell, A. R. and Wait, R., The Finite Element Method in Partial Differential
Equations, John Wiley, 1977,

33. Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-
Holland,Amsterdam, 1978.

34, Fairweather, G., Finite Element Galerkin Methods for Differential Equations, Marcel
Dekker, NY, 1978,

35. Babuska, I. and Aziz, A. K., "Survey Lectures on the Mathematical Foundations of the
Finite Element Method," in The Mathematical Foundations of the Finite Element Method
with Applications to Partial Differential Equations, ed. by A. K. Aziz, Academic Press,
NY, 1972, pp. 1-359.

R SE YRl PR IA | | AAh

36. Wozniakowski, H., "A Survey of Information-Based Complexity," Journal of Complexity,
Vol. 1, 1985, pp. 11-44,

37. Robinson, J., "Some Thoughts on Practical Error Parameters for Finite Element
Analysis," in Proceedings of Third Post Conference on Computational Aspects of the
Finite Element Method, Sept. 1975, Imperial College of Science and Technology, London,
England, pp. 111-118,

38. Peano, A. and Riccioni, R., "Automated Discretization Error Control in Finite Element
Analysis," in Finite Element Methods in the Commercial Environment, ed. by J.
Robinson, Robinson and Associates, Dorset, England, Vol. 2, 1978, pp. 368-387.

39. Szabo, B. A., "Mesh Design for the p-Version of the Finite Element Method," Report
WU/CCM-85/2, Center for Computational Mechanics, Washington University, St. Louis,
MO, June 1985.

40. Ladeveze, P. and Leguillon, D., "Error Computation in Finite Element Method and
Applications," in Numerical Methods for Engineering, Second International Congress, ed.
by E. Absi, R. Glowinski, P. Lascaux and H. Veysseyre, Bordas, Paris, 1980, pp. 555-564.

41, Babuska, I., Szabo, B. A. and Katz, I. N., "The p-Version of the Finite Element Method,"
SIAM Journal on Numerical Analysis, Vol. 18, No. 3, June 1981, pp. 515-545.

42. Dorr, M. R., "The Approximation Theory for the p-Version of the Finite Element
Method," SIAM Journal on Numerical Analysis, Vol. 21, No. 6, Dec. 1984, pp. 1181-1207.

43. Dorr, M. R., "The Approximation of Solutions of Elliptic Boundary Value Problems Via
the p-Version of the Finite Element Method," SIAM Journal on Numerical Analysis, Vol.
23, 1986, pp. 58-77.

44, Katz, I,
Requiring C
1082-1106.

lN. and Wang, D, W., "The p-Version of the Finite Element Method for Problems
-Continuity," SIAM Journal on Numerical Analysis, Vol. 22, No. 6, 1985, pp.

45. Babuska, I. and Dorr, M. R., "Error Estimates for the Combined h and p Versions of
Finite Element Method," Numerische Mathematik, Vol, 37, 1981, pp. 257-277.

46. Guo, B. and Babuska, L., "The h-p Version of the Finite Element Method, Part I - The
Basic Approximation Results; Part Il - General Results and Applications," to appear in
Computational Mechanics, Vol. |, 1986.

IR SFRVAVEIICS  LIIarLre

w
~3
2t % "y s,

-
Al
.




- - o

ORI R

1.

47. Babuska, I. and Suri, M., "The Optimal Convergence Rate of the p-Version of the Finite
Element Method," Technical Note BN-1045, Institute for Physical Science and
Technology, University of Maryland, Oct. 1985.

48. Babuska, I. and Suri, M., "The h-p Version of the Finite Element Method with Quasi-
uniform Meshes," Technical Note, Institute for Physical Science and Technology,
University of Maryland, April 1986.

49. Eriksson, K., "Some Error Estimates for the p-Version of the Finite Element Method,"
SIAM Journal on Numerical Analysis," Vol. 23, 1986, pp. 403-411.

50. Gui, W. and Babuska, L., "The h, p and h-p Versions of the Finite Element Method in One
Dimension, Part I - The Error Analyses of the p-Version," Technical Note Bn-1036,
Institute for Physical Science and Technology, University of Maryland, April 1985.

51. Gui, W. and Babuska, L., "The h, p and h-p Versions of the Finite Element Method in One
Dimension, Part II - The Error Analyses of the h and h-p Versions," Technical Note BN-
1037, Institute for Physical Science and Technology, University of Maryland, May 1985.

52. Szabo, B. A., "PROBE - Theoretical Manual," Release 1.0, NOETIC Technologies Corp.,
St. Louis, MO, 1985,

53. Babuska, I., Gui, W. and Szabo, B., "Performance of the h,p and h-p Versions of the
Finite Element Method," in Research in Structures and Dynamics - 1984, R. J. Hayduk
and A. K. Noor (compilers), NASA CP-2335, 1984, pp. 73-93.

54. Babuska, I. and Szabo, B., "On the Rates of Convergence of the Finite Element
Method," International Journal for Numerical Methods in Engineering, Vol. 18, 1982, pp.
323-34].

55. Szabo, B. A., "Computation of Stress Field Parameters in Areas of Steep Stress
Gradients,"” Communciations in Applied Numerical Methods, Vol. 2, 1986, pp. 133-137.

56. Szabo, B. A., "Estimation and Control of Error Based on p-Convergence," in Accuracy
Estimates and Adaptivity for Finite Elements, ed. by I. Babuska, et al, John Wiley, 1986.

57. Brandt, A., "Guide to Multigrid Development in Multigrid Methods," Lecture Notes in
Mathematics, No. 960, ed. by W. Hackbusch and U. Trottenberg, Springer Verlag, New
York,1982, pp. 220-312.

58. Mikhlin, S. G., Variational Methods in Mathematical Physics, Gostekhizdat, Moscow,
1957, translated into English and published by Pergamon Press, 1964,

59. Aubin, J. P. and Burchard, H. G., "Some Aspects of the Method of the Hypercircle
Applied to Elliptic Variational Problems," in Numerical Solution of Partial Differential
Equations II - SYNSPADE 1970, B. Hubbard, ed., Academic Press, 1971, pp. 1-67.

60. de Veubeke, F. B., "Displacement and Equilibrium Models in the Finite Element

Method," in Stress Analysis, ed. by O. C. Zienkiewicz and G. S. Hollister, John Wiley, NY,
1965.

61. Sander, G., "Application of the Dual Analysis Principle," High Speed Computing of
Elastic Structures, ed. by B. F. de Veubeke, Universite de Liege, 1971.

v e g

“~

WD #

"y Tt e

e e,




62. Babuska, I. and Rheinboldt, W. C., "Error Estimates for Adaptive Finite Element
Computations,”" SIAM Journal on Numerical Analysis, Vol. 15, No. 4, Aug. 1978, pp. 736-
754,

63, Babuska, I. and Rheinboldt, W. C., "A Posteriori Error Estimates for the Finite Element !
Method," International Journal for Numerical Methods in Engineering, Vol. 12, No. 10,
1978, pp. 1597-1615.

64. Babuska, I. and Rheinboldt, W. C., "Reliable Error Estimation and Mesh Adaptation for
the Finite Element Method," in Computational Methods in Nonlinear Mechanics, ed. by J.
T. Oden, North Holland, Amsterdam, 1980, pp. 67-108.

65. Babuska, I. and Rheinboldt, W. C., "A Posteriori Error Analysis of Finite Element
Solutions for One-Dimensional Problems," SIAM Journal on Numerical Analysis, Vol. 18,
1981, pp. 565-589.

66. Babuska, I. and Rheinboldt, W. C., "A Survey of A Posteriori Error Estimates and
Adaptive Approaches in the Finite Element Method," Technical Note BN-981, Institute
for Physical Science and Technology, University of Maryland, April 1982. Also published N
in Proceedings of the China-France Symposium on Finite Element Methods, Feng Kang

and J. L. Lions (eds.), Science Press Beijing, China, Gordon and Breach Science

Publishers, New York, 1983,

67. Demkowicz, L., Devloo, Ph. and Oden, J. T., "On an h-Type Mesh Refinement Strategy
Based on Minimization of Interpolation Errors," Computer Methods in Applied Mechanics
and Engineering, Vol. 53, 1985, pp. 67-89.

68. Kelly, D. W., Gago, J. P. De S. R., and Zienkiewicz, O. C., "A Posteriori Error Analysis .
and Adaptive Processes in the Finite Element Method: Part [ - Error Analysis," \
International Journal for Numerical Methods in Engineering, Vol. 19,1983, pp. 1593-1619. !

69. Kelly, D. W., "The Self-Equilibration of Residuals and Complementary A Posteriori
Error Estimates in the Finite Element Method," International Journal for Numerical
Methods in Engineering, Vol. 20, 1984, pp. 1491-1506. p

70. Kelly, D. W. and Donovan, 1., "Upper Bound A Posteriori Error Estimates for the Finite
Element Method Applied to Linear Elasticity," in Computational Techniques and
Applications: CTAC-83, ed. by J. Noye and C. Fletcher, Elsevier Science Publishers,

B.V. (North-Holland), 1984, pp. 190-206.

71. Zienkiewicz, O. C. and Craig, A. W., "A Posteriori Error Estimation and Adaptive Mesh
Refinement in the Finite Element Method," in The Mathematical Basis of Finite Element

Methods (with Applications to Partial Differential Equations), ed. by D. F. Griffiths, .
Clarendon Press, Oxford, 1984, pp. 71-89. g

.

72. Specht, B., "A General Construction of Local Error Estimators for Conforming Finite

Elements," Computers and Structures, Vol. 19, No. 5/6, 1984, pp. 815-822. S
73. Bank, R. E. and Weiser, A., "Some A Posteriori Error Estimators for Elliptic Partial i\
Differential Equations," Mathematics of Computation, Vol. 44, No. 170, April 1985, pp.
283-301. K
.
39

A



:
Q)
.\
P
-.\
:
;
g
3
K

R I WS

74. Gibert, P., "A Posteriori Errors in the Finite Element Method," Seventh International
Seminar on Computational Aspects of the Finite Element Method, Chicago, IL, August
29-30, 1983, ONERA, TP, No. 1983-89, 1983,

75. Rivara, M. C., Adaptive Multigrid Software for the Finite Element Method, Ph.D.
Dissertation, Katholieke Universiteit Leuven, Belgium, 1984.

76. Weiser, A., "Local-Mesh, Local-Order, Adaptive Finite Element Methods with A
Posteriori Error Estimators for Elliptic Partial Differential Equations," Technical Report
213, Dept. of Computer Science, Yale University, 1981.

77. Babuska, I. and Miller, A., "A Posteriori Error Estimates and Adaptive Techniques for
Finite Element Method," Technical Note BN-968, Institute for Physical Science and
Technology, University of Maryland, June 1981.

78. Babuska, I. and Yu, D., "Asymptotically Exact A Posteriori Error Estimator for a
Feedback Finite Element Method with Biquadratic Elements," Technical Note, Institute
for Physical Science and Technology, University of Maryland, 1986.

79. Oden, J. T., Demkowicz, L., Strouboulis, T. and Devloo, P., "Adaptive Methods for
Problems in Solid and Fluid Mechanics,” in Accuracy Estimates and Adaptivity for Finite
Elements, ed. by 1. Babuska, et al, John Wiley, 1986.

80. Gui, W. and Babuska, ., "The h, p and h-p Versions of the Finite Element Method in
One-Dimension, Part 111 - The Adaptive h-p Version," Technical Note BN-1033, Institute
for Physical Science and Technology, University of Maryland, June 1985,

81. Bank, R. E., "PLTMG Users' Guide," June 1981 Version, Technical Report, Dept. of
Mathematics, University of California, San Diego, 1982,

82. Babuska, I., Rheinboldt, W. C., "Adaptive Finite Element Processes in Structural
Mechanics," in Elliptic Problem Solvers II," ed. by G. Birkhoff, A. Schoenstadt, Academic
Press, 1984, pp. 345-377.

83. Oden, J. T., Demkowicz, L., "A Posteriori Error Estimates and Adaptivity in Finite
Element Method," Texas Institute for Computational Mechanics, University of Texas at
Austin.

84, Miller, A. D., "Adaptive Techniques in Finite Element Analysis," in Computational
Techniques and Applications: CTAC-83, ed. by J. Noye and C. Fletcher, Elsevier Science
Publishers B.V. (North Holland), 1984, pp. 241-255.

85. Raﬁk, E., "A Posteriori Fehlerabschatzungen und Adaptive Netzverfeinerung fur Finite
Element und Randintegral element - Methoden," Ph Dissertation, Munich, Fed. Rep.

Germany, Mitteilungen aus dem Institut fur Bauingenieurwesen I, Tech. Univ Munchen,
Heft 16, 1985.

86. Ladeveze, P. and Leguillon, D., "Error Estimate Procedure in the Finite Element
Method and Applications,"” SIAM Journal on Numerical Analysis, Vol. 20, No. 3, June
1983, pp. 485-509.

87. Kleiber, M., "An Error Estimation Method in Finite Element Structural Analysis,"
Computers and Structures, Vol, 11, 1980, pp. 343-347,

y v v v -

7 v

v,

“y W oAy 2

s>




‘ol -~
» )J»‘ ‘s

SNy

“‘,J'—' K

R,

e
PRy R,

l" l" B

s
)
n'l" »

COLRLLL

ol W3 BOW N

LA

A Bat Dot Bt Gl dat gt U N Aot Bt ot st Ban jiat Saf Bav Bat Ba ek B ba" b Aa' oia Satatat Ba S W B g T 2 o',

88. Szymczak, W. G. and Babuska, 1., "Adaptivity and Error Estimation for the Finite
Element Method Applied to Convection Diffusion Problems," SIAM Journal on Numerical ’
Analysis, Vol. 21, No. 5, Oct. 1984, pp. 910-954,

89. Babuska, L., "Feedback, Adaptivity and A Posteriori Estimates in Finite Elements:
Aims, Theory and Experience,” in Accuracy Estimates and Adaptivity for Finite
Elements, ed. by 1. Babuska, et al, John Wiley, 1986.

90. Bieterman, M. and Babuska, I., "The Finite Element Method for Parabolic Equations, I.
A Posteriori Error Estimation,” Numerische Mathematik, Vol. 40, 1982, pp. 339-371.

91. Demkowicz, L., Oden, J. T. and Strouboulis, T., "Adaptive Finite Elements for Flow
Problems with Moving Boundaries. Part I: Variational Principles and A Posteriori
Estimates," Computer Methods in Applied Mechanics and Engineering, Vol. 46, 1984, pp.
217-251.

92. Bieterman, M., Flaherty, J. E. and Moore, P. K., "Adaptive Refinement Methods for
Nonlinear Parabolic Partial Differential Equations,”" in Accuracy Estimates and
Adaptivity for Finite Elements, ed. by 1. Babuska, et al, John Wiley, 1986.

93. Bieterman, M. and Babuska, 1., "An Adaptive Method of Lines with Error Control for
Parabolic Equations of the Reaction-Diffusion Type," Journal of Computational Physics,
Vol. 63, No. 1, March 1986, pp. 33-66.

94. Adjerid, S. and Flaherty, J. E., "A Moving Mesh Finite Element Method with Local
Refinement for Parabolic Partial Differential Equations,"” Technical Report No. 85-21,
Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, New York, no date.

95. Flaherty, 3. E., Coyle, J. M., Ludwig, R. and Davis, S. F., "Adaptive Finite Element
Methods for Parabolic Partial Differential Equations," in Adaptive Computational
Methods for Partial Differential Equations, ed. by 1. Babuska, J. Chandra and J. E.
Flaherty, SIAM, Philadelphia, 1983, pp. 139-152.

96. Ewing, R, E., "Adaptive Mesh Refinements in Reservoir Simulation Applications,"
Proceedings of the International Conference on Accuracy Estimation and Adaptive
Refinements in Finite Element Computations, Lisbon, Portugal, 1984, pp. 31-40.

97. Davis, S. F. and Flaherty, J. E., "An Adaptive Finite Element Method for Initial-
Boundary Value Problems for Partial Differential Equations,”" SIAM Journal on Scientific
and Statistical Computing, Vol. 3, 1982, pp. 6-27.

98. Rank, E., "Adaptivity and Accuracy Estimation for Finite Element and Boundary
Integral Methods," in Accuracy Estimates and Adaptivity for Finite Elements, ed. by .
Babuska, et al, John Wiley, 1986,

99. Mesztenyi, C. and Szymczak, W., "FEARS User's Manual for UNIVAC 1100," Technical

Note BN-991, Institute for Physical Science and Technology, University of Maryland,
Oct. 1982,

100. Rivara, M. C., "EXPDES User's Manual," Katholieke Universiteit, Leuven, Belgium,
1984,

41

LSRN}

......
............................
........................................................

------



101. Szabo, B. A., "On the Goals of Computation in Stress Analysis," in Recent Advances in
Engineering Mechanics and Their Impact on Civil Engineering Practice, Vol. II, ed. by W,
F.Chen and A. D. M. Lewis, American Society of Civil Engineers, May 1983, pp. 818-820.

102, Babuska, L. and Miller, A., "The Postprocessing Approach in the Finite Element Method
- Part 3: A Posteriori Error Estimates and Adaptive Mesh Selection," International
Journal for Numerical Methods in Engineering, Vol. 20, 1984, pp. 2311-2324,

oo '

103. Lindberg, B., "Pointwise Error Estimation for Finite Element Discretizations, I,
"TRITA-NA-8105, The Royal Institute of Technology, Stockholm, Sweden, 1981.

104. Szabo, B. A., "Implementation of a Finite Element Software System with h and p
Extension Capabilities," in Unification of Finite Element Software Systems, ed. by H.
Kardestuncer, North Holland, May 1985, pp. 187-204.

N 105. Rheinboldt, W. C., "Feedback Systems and Adaptivity for Numerical Computations," in
g Adaptive Computational Methods for Partial Differential Equations, ed. by 1. Babuska, J.
Chandra and J. Flaherty, SIAM, 1983, pp. 3-19.

) 106. Babuska, I. and Gui, W., "Basic Principles of Feedback and Adaptive Approaches in the
Q] Finite Element Method," Technical Note BN-1042, Institute for Physical Science and
. Technology, University of Maryland, July 1985,

, 107. Babuska, I. and Rank, E., "An Expert-System-Like Feedback Approach in the h-p
Version of the Finite Element Method," Technical Note, Institute for Physical Science
and Technology, University of Maryland, 1986.

h 108. Babuska, 1. and Vogelius, M., "Feedback and Adaptive Finite Element Solution of One-
. Dimensional Boundary Value Problems," Numerische Mathematik, Vol. 44, 1984, pp. 75-
k. 107.

X 109. Diaz, A. R., Kikuchi, N., Papalambros, P. and Taylor, J. E., "Design of an Optimal Grid
for Finite Element Methods," Journal of Structural Mechanics, Vol. 11, No. 2, 1983, pp.
215-230.

110. Diaz, A. R., Kikuchi, N. and Taylor, J. E., "A Method of Grid Optimization for Finite
Element Methods," Computer Methods in Applied Mechanics and Engineering, Vol.
41,1983, pp. 29-45.

N 111. Harten, A. and Hyman, J. M., "Self-Adjusting Grid Methods for One-Dimensional

- Hyperbolic Conservation Laws," Journal of Computational Physics, Vol. 50, 1983, pp.

N 235-264.

. 112. Hedstrom, G. W. and Rodrigue, G. H., "Adaptive Grid Methods for Time-Dependent
j Partial Differential Equations," in Multigrid Methods, W. Hackbusch and U. Trottenberg,
‘ eds., Springer Verlag, 1982, pp. 474-484,

113. Lucier, B. 1., "A Stable Adaptive Numerical Scheme for Hyperbolic Conservation
Laws," to appear in SIAM Journal on Numerical Analysis, 1986.

X
. . . . . !
o 114. Lucier, B. J., "A Moving Mesh Numerical Method for Hyperbolic Conservation Laws," o
’ Mathematics of Computation, Vol. 46, No. 173, Jan. 1986, pp. 59-69. 3
’ >
X

o
42 N
3
. 3
o R
e Rt e e e e e e ey e e et e e e e e T ~ - T e e T ST NN e e st
Lol dar S LR - Lo, .' SRS R T S N N R T o R R Sttt MY



=

F.“\i\?‘dwmm Ll il gil o A g 18 Bl el gkl grid 3 O AEA S PO Y 2 Y T Bt
o
Al
\

)

115. Osher, S. and Sanders, R., "Numerical Approximations to Nonlinear Conservation Laws
with Varying Time and Space Grids," to appear in Mathematics of Computation, 1986. .

116. Berger, M. J. and Oliger, J., "Adaptive Mesh Refinement for Hyperbolic Partial o
Differential Equations," Journal of Computational Physics, Vol. 53, 1984, pp. 484-512. M

117. Miller, K. and Miller, R. N., "Moving Finite Elements.L," SIAM Journal on Numerical v
Analysis, Vol. 18, No. 6, Dec. 1981, pp. 1019-1032, -

118. Miller, K., "Moving Finite Elements.I" SIAM Journal on Numerical Analysis, Vol. 18,
No. 6, Dec. 1981, pp. 1033-1057.

119. Miller, K., "Alternate Modes to Control the Nodes in the Moving Finite Element .
Method," in Adaptive Computational Methods for PDE's, Proceedings of a Workshop at

University of Maryland, Feb. 14-16, 1983, ed. by 1. Babuska, J. Chandra and J. Flaherty, 2
SIAM, 1983, pp. 165-182. 1

120. Flaherty, J. E. and Moore, P. K., "A Local Refinement Finite Element Method for Time
Dependent Partial Differential Equations," ARO Rep. 85-1, Transactions of the Second
Army Conference on Applied Mathematics and Computing held in Troy, NY, May 22-25,
1984, Army Research Office, Research Triangle Park, NC.

121. Dupont, T., "Mesh Modification for Evolution Equations," Mathematics of Computation,
Vol. 39, 1982, pp. 85-107.

122, Herbst, B. M., Schoombic, S. W. and Mitchell, A. R., "Equidistributing Principles in
Moving Finite Element Methods," Journal of Computers and Applied Mathematics, Vol. 9,
1983, pp. 377-489,

v s
- « ¥

123, Dwyer, H. A., "Grid Adaptation for Problems with Separation, Cell Reynolds Number,
Shock-Boundary Layer Interaction and Accuracy," Proceedings of the Twenty-first
Aerospace Sciences Meeting, Reno, NV, AIAA Paper No. 83-0449, 1983,

¢ Y.

124, Adjerid, S. and Flaherty, J. E., "A Moving Finite Element Method for Time Dependent
Partial Differential Equations with Error Estimation and Refinement," submitted to
SIAM Journal on Numerical Analysis, 1986,

125. Demkowicz, L. and Oden, J. T., "An Adaptive Characteristic Petrov-Galerkin Finite
Element Method for Convection-Dominated Linear and Nonlinear Parabolic Problems in
Two Space Variables," Texas Institute for Computational Mechanics, University of Texas
at Austin, 1985.

126. Basu, P. K. and Peano, A., "Adaptivity in P-Version Finite Element Analysis," Journal of S
Structural Engineering, Vol. 109, No. 10, 1983, pp. 2310-2324.

127. Szabo, B. A., "Implementation of a Finite Element Software System with H and P
Extension Capabilities," in Proceedings of the Eighth Invitational UFEM : 4
Symposium, ed. by H. Kardestuncer, May 1985, ’

128. Gago, J. P. De S. R., Kelly, D. W., Zienkiewicz, O. C. and Babuska, I., "A Posteriori .
Error Analysis and Adaptive Processes in the Finite Element Method: Part Il - Adaptive

Mesh Refinement," International Journal for Numerical Methods in Engineering, Vol. 19,

1983, pp. 1621-1656,




129. FIESTA, Theoretical Literature, ISMES, Bergamo, Italy.

130. Ewing, R. E., "Efficient Adaptive Procedures for Fluid Flow Applications," to appear in
Computer Methods in Applied Mechanics and Engineering, 1986.

131. Demkowicz, L. and Oden, J. T., "An Adaptive Characteristic Petrov-Galerkin Finite
Element Method for Convection-Dominated Linear and Nonlinear Parabolic Problems in
One Space Variable," Texas Institute for Computational Mechanics, University of Texas
at Austin, 1985,

132. Andersson, B. and Falk, U., "Finite Element Analysis of Three-Dimensional Structures
using Adaptive p-Extensions," to be published in the Proceedings of the NATO Advanced
Study Institute on Computer Aided Optimal Design, Portugal, Springer-Verlag, June 1986.

133. Frank, R. and Ueberhuber, C. W., "Iterated Defect Correction for the Efficient Solution
of Stiff Systems of Ordinary Differential Equations," BIT, Vol. 17, No. 2, 1977, pp. 146-
159.

134. Ueberhuber, C. W., "Implementation of Defect Correction Methods for Stiff
Differential Equations," Computing, Vol. 23, 1979, pp. 205-232,

135. Lindberg, B., "Error Estimation and Iterative Improvement for Discretization
Algorithms," BIT, Vol. 20, 1980, pp. 486-500.

136. Frank, R., Hertling, J. and Monnet, J. P., "The Application of Iterated Defect
Correction to Variational Methods for Elliptic Boundary Value Problems," Computing,
Vol. 30, 1983, pp. 121-135,

137. Bohmer, K. and Stetter, H. J. (eds.), Defect Correction Methods - Theory and
Applications, Springer Verlag, New York, 1984,

138. McNeice, G. M. and Marcal, P. V., "Optimization of Finite Element Grids Based on
Minimum Potential Energy," Journal of Engineering for Industry, ASME, Vol. 95, 1973,
pp. 186-190.

139. Turcke, D. J. and McNeice, G. M., "Guidelines for Selecting Finite Element Grids Based
on an Optimization Study," Computers and Structures, Vol. 4, No. 3, May 1974, pp. 499-
519.

140. Felippa, C. A., "Numerical Experiments in Finite Element Grid Optimization by Direct
Energy Search," Applied Mathematical Modeling, Vol. 1, 1977, pp. 239-244,

141, Shephard, M. S. and Gallagher, R. H. (eds.), "Finite Element Grid Optimization," PVP-
38, The American Society of Mechanical Engineers, 1979,

142, Eriksson, K., "Finite Element Methods of Optimal Order for Problems with Singular
Data,” Mathematics of Computation, Vol. 44, April 1985, pp. 345-360,

143, Eriksson, K., "High-Order Local Rate of Convergence by Mesh Refinement in the Finite
Element Method," Mathematics of Computation, Vol, 45, July 1985, pp. 109-142,

44



144, Rheinboldt, W. C. and Mesztenyi, C. K., "On a Data Structure for Adaptive Finite
Element Mesh Refinements," ACM Transactions on Mathematical Software, Vol. 6, No. 2,
June 1980, pp. 166-187,

145. Zave, P. and Rheinboldt, W., "Design of an Adaptive Parallel Finite Element System,"
ACM Transactions on Mathematical Software, Vol. 5, 1979, pp. 1-17.

146. Berger, M. J., "Data Structures for Adaptive Mesh Refinement," in Adaptive
Computational Methods for Partial Differential Equations," ed. by L. Babuska, J. Chandra
and J. E. Flaherty, SIAM, Philadelphia, 1983, pp. 237-257.

147. Bank, R. E., "The Efficient Implementation of Local Mesh Refinement Algorithm," in
Adaptive Computational Methods for Partial Differential Equations, ed. by I. Babuska, 1.
Chandra and J. E. Flaherty, SIAM, Philadelphia, 1983, pp. 74-85.

148, Diaz, J. C., Ewing, R. E., Jones, R. W., McDonald, A. E., Uhler, L. M., and von
Rosenberg, D. V., "Self-Adaptive Local Grid Refinement for Time-Dependent Two-
Dimensional Simulation," Finite Elements in Fluids, Vol. VI, John Wiley, 1986.

149, Diaz, J. C. and Ewing, R. E., "Potential of HEP-Like MIMD Architecture in Self-
Adaptive Local Grid Refinement for Accurate Simulation of Physical Processes,"
University of Oklahoma Report No. QU-PRI-TR-85-03, Jan. 1985.

150. Vogelius, M., "An Analysis of the p-Version of the Finite Element Method for Nearly
Incompressible Materials,"” Numerische Mathematik, Vol. 41, 1983, pp. 39-53.

151. Krizek, M. and Neittaanmaki, P., "On Superconvergence Techniques," Department of
Mathematics, Jyvaskyla University, Finland, Preprint No. 34, 1984,

152. Douglas, J., IJr. and Dupont, T., "Galerkin Approximations for the Two-Point Boundary
Problem Using Continuous, Piecewise Polynomial Spaces," Numerische Mathematik, Vol.
22, 1974, pp. 99-109.

153. Wheeler, M. F., "A Galerkin Procedure for Estimating the Flux for Two-Point Boundary
Value Problems," SIAM Journal on Numerical Analysis, Vol. 11, No. 4, Sept. 1974, pp.
764-768,

154. Hinton, E. and Campbell, J. S., "Local and Global Smoothing of Discontinuous Finite
Element Functions Using a Least Squares Method," International Journal for Numerical
Methods in Engineering, Vol. 8, 1974, pp. 461-480,

155. Hinton, E., Scott, F. C. and Ricketts, R, E., "Local Least Squares Stress Smoothing for
Parabolic Isoparametric Elements," International Journal for Numerical Methods in
Engineering, Vol. 9, 1975, pp. 235-256.

156. Dupont, T., "A Unified Theory of Superconvergence for Galerkin Methods for Two-Point
Boundary Problems,”" SIAM Journal on Numerical Analysis, Vol. 13, No. 3, June 1976, pp.
362-368.

157. Zlamal, M., "Superconvergence and Reduced Integration in the Finite Element Method,"
Mathematics of Computation, Vol. 32, July 1978, pp. 663-6385.

45

oy

Py

LSl

"fll'

o 8




"TY P VTN Y F T TE X

158. Lin, Q., Lie, T., Shin, S., and Maximalin, "Norm Estimate Extrapolation and Optimal
Point of Stresses for the Finite Element Methods on Strongly Regular Meshes," Journal of
Computers and Mathematics, 1983, pp. 376-383,

159. Leyk, Z., "Superconvergence in the Finite Element Method," Mathematyka Stosowana,
Vol. 20, 1982, pp. 93-107,

160. Oganesjan, L. A. and Ruhovec, L. A., "Variational Difference Methods for Solving
Elliptic Equations," Akad. Nauk Army. SSR, Erevan, 1979.

161. Bramble, L. H. and Schatz, A. H., "Higher-Order Local Accuracy by Averaging in the
Finite Element Method," Mathematics of Computation, Vol. 31, 1974, pp. 94-111.

162, Andreev, A. B., "Superconvergence of the Gradient for Linear Triangle Elements for
Elliptic and Parabolic Equations," C. R. Acad. Bulgare Sci., Vol. 37, 1984, pp. 293-296.

163. Louis, A., "Acceleration of Convergence for Finite Element Solutions of the Poisson
Equation,” Numerische Mathematik, Vol. 33, 1979, pp. 43-53.

164, Babuska, I. and Miller, A., "The Postprocessing Approach in the Finite Element Method
- Part I: Calculation of Displacements, Stresses and Other Higher Derivatives of the
Displacements," International Journal for Numerical Methods in Engineering, Vol. 20,

1984, pp. 1085-1109,

165. Babuska, I. and Miller, A., "The Postprocessing Approach in the Finite Element Method
- Part II: The Calculation of Stress Intensity Factors," International Journal for
Numerical Methods in Engineering, Vol. 20, 1984, pp. 1111-1129,

166. Stein, E. and Ahmad, R., "An Equilibrium Method for Stress Calculation Using Finite
Element Displacement Models," Computer Methods in Applied Mechanics and
Engineering, Vol. 10, 1977, pp. 175-198.

167. Stein, E. and Ahmad, R., "On the Stress Computation in Finite Element Models Based on

Displacement Approximations," Computer Methods in Applied Mechanics and
Engineering, Vol. 4, No. 1, July 1974, pp. 81-96.

168. Haber, R. B., "A Consistent Finite Element Technique for Recovery of Distributed
Reactions and Surface Tractions," International Journal for Numerical Methods in
Engineering, Vol. 21, Nov. 1985, pp. 2013-2025.

169. Demkowicz, L. and Oden, J. T., "Extraction Methods for Second Derivatives in Finite
Element Approximation of Linear Elasticity Problems," Communications in Applied
Numerical Methods, Vol. 1, 1985, pp. 137-139,

170. Grisvard, P. Wendland, W. and Whiteman, J. R. (eds.), Singularities and Constructive
Methods for Their Treatment, Proceedings, Lecture Notes in Mathematics, No. 1121,
Springer Verlag, Berlin, 1983,

171, Carey, G. F., "Derivative Calculation From Finite Element Sclutions," Computer
Methods in Applied Mechanics and Engineering, Vol. 35, 1982, pp. 1-14.

172, Loubignac, G., Cantin, G. and Touzot, G., "Continuous Stress Fields in Finite Element
Analysis,”" AIAA Journal, Vol. 15, No. 11, Nov. 1977, pp. 1645-1647,

46

)

2 3 3550

=5 %% M5

=

- ¢ v
AR



A E T HE"SS P s vEBl N\

-V,

L
L

173. Cantin, G., Loubignac, G. and Touzot, G., "An Iterative Algorithm to Build Continuous
Stress and Displacement Solutions,"” International Journal for Numerical Methods in
Engineering, Vol. 12, 1978, pp. 1493-1506.

174, Cook, R. D., "Loubignac's Iterative Method in Finite Element Elastostatics,"
International Journal for Numerical Methods in Engineering, Vol. 18,1982, pp, 67-75.

175. Zienkiewicz, O. C., Xi-Kui, L. and Nakazawa, S., "Iterative Solution of Mixed Problems
and the Stress Recovery Procedures,”"” Communications in Applied Numerical Methods,
Vol. 1, 1985, pp. 3-9.

176. Fletcher, C. A. 1., Computational Galerkin Methods, Springer-Verlag, New York, 1984,

177. Thomee, V., "Galerkin Finite Element Methods for Parabolic Problems," Lecture Notes
in Mathematics, Vol. 1054, Springer-Verlag, Berlin, 1984.

178, Gordon, W. 1. and Hall, C. A., "Construction of Curvilinear Coordinate Systems and
Applications to Mesh Generation," International Journal for Numerical Methods in
Engineering, Vol. 7, 1973, pp. 461-477.

179. Gordon, W. J. and Hall, C. A., "Transfinite Element Methods: Blending-Function

Interpolation Over Arbitrary Curved Element Domains," Numerische Mathematik, Vol.
21, 1973, pp. 109-129,

180. Wang, D. W., Katz, I. N. and Szabo, B. A., "Implementation of a Cl Triangular Element
Based on the p-Version of the Finite Element Method," Computers and Structures, Vol.
19, No. 3, 1984, pp. 381-392.

P AL

v e e e v o

;|

Ny % v "

" )

£ L7

... A
DN

,,,, R I
4 s Sof.t,

-

-
Y
(Y
.



UCAC A Rt Spt e b e Aot Jhgs Nt nt ot Mgt it Tt et e Nat il gt Qatobgt 0nt Baroly JAgt dut iy g AN JE SR N AL of8 A aN ot Jle o' b g’ b atd o'Aalh At il Adh et ol Ak, o

¥ e

’ The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

o To conduct research in the mathematical theory and computational ;
v implementation of numerical analysis and related topics, with emphasis :
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra. _

1 o} To help bridge gaps between computational directions in engineering,
3 physics, ete., and those in the mathematical community.

o} To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington

' Metropolitan area. N

. o To assist with the education of numerical analysts, especially at the '
¢ postdoctoral level, in conjunction with the Interdisciplinary Applied
i Mathematics Program and the programs of the Mathematics and Computer

f] Science Departments. This includes active collaboration with govern- :
ment agencies such as the National Bureau of Standards. -]

o To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babuska, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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